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ABSTRACT

y 798¢ A
A previously-given method for deriving uniformly valid

perturbation series for the Klein-Gordon equation with a
"small" nonlinear term is generalized to include situations
in which the lowe'_st order solution is not restricted to be

a monochromatic wave. 4M




I. INTRODUCTION

It is the purpose of this paper to present a general method
for developing well-behaved perturbation expansions in € for the

Klein-Gordon equation with a small nonlinear term:

2 2
2 of of
(—:—te -cz-a—i-z +2°) £ (x,t) = €F (fo"'é'{ T ) (1a)

where F is some arbitrary function of f, 3f/3t, and 3f/dx.

Both f and F are real. For €=0, the solution to (la) is easily given
as a Fourier series or integral; however, a straightforward attempt
to expand in powers of ¢ about the € = 0 solution leads to
secular'(ioe., t or x proportional) terms in the corrections to f,
making more refined methods necessary. Such an expansion for Eq. (la)
has recently been givenl, adepting the Krylov-Bogolyubov-Mitropolskii

techniques of nonlinear mechanics 23

. However, the treatment of reference 1
(which was designed for a specific plasma problem) suffers from one rather
severe limitation on the zeroth order solution: only a monochromatic wave
led to manageable equations in the higher orders.

Here, this limitation is removed, and the treatment of reference 1
is generalized to include all situations in which the zeroth order
is expressible as a Fourier series which is summed over a discrete
spectrum of frequencies. The restriction to & discrete spectrum does not

eliminate any interesting phenomena; the continuous spectrum case

actually appears less pathological than the discrete one.
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It turns out to be easler to wbrk in the characteristic
coordinates rather than x and t. Therefore, in Sec._, II, the method
is developed entirely in these coordinates. In Sec. III, the role
of boundary conditions is discussed, and two simple examples are
treated in Sec. IV.

In the interests of simplicity, we go only to O (e) in this
paper, though nothing conceptually new is involved in going to higher
order. Also for simplicity, we confine ourselves to very simple forms
for F, for the F's which occur in problems of genuine physical interest
seem always to generate so much algebra that an understanding of the method

becomes unnecessarily difficult.

II. THE METHOD

The substitutions £ =t + x/c, n=t - x/c, A2 = l&Az, F = hT,

reduce (la) to the form

2
{§W+ Az}f (,n) = €e7 (£, g—f—. %) . (1v)

We seek a solution to (1b) of the form

iy (K,L)

t=) al(K,l) e teu, (a,9) + 52112 (a,9) + ooy (2)

K,L



where "a" and " ¢ " stand symbolically for all the emplitudes &(K,L)
and phases  ¥(K,L).

We must take some pains to identify the labels K,L; to do this
requires several steps.

(i) We introduce an enumerable sequence of two-component basic vectors,

(kj,zj), the components of which satisfy
_ .2 .
kaj = A all j.
The allowed values of kj or IJ will always be determined by boundary
conditions, in a way that need not concern us yet.

(ii) The notation (K,L) means the derived vector

(KoL) = 0y (kq,2)) + n, (kyuy) + ove + g (kp,ty),

where nj, Ny, ..., Ny are any collection of integers, positive, negative,

or zero. Clearly, the basic vectors are also derived vectors.

(1ii) If
(K,L) = ZJ n, (kj,zj)
and
(x’,17) = ZJ ng (kJ,ZJ).
then (K,L) is regarded as the same vector as (K/, 1/) if and only if

nJ = n.j s all jJ.
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(iv) With each basic vector (kj"'.j) there is associated a basic phase w(kj,!.a)o

(v) For the derived vector (K,L), the phase ¥ (K,L) is defined by

¥(K,L) = MZJ n, kJ,ZJnJ t,)= Zj n, w(kJ,zJ)o

(vi) For the basic phases y (k:j’ 23), there is assumed to exist an expansion of

the form
LYNEN a A
OY\R g% J ( )
= k, + €C a) ¥ coo 9
) k.2
3 J 1ty
ap(k,,4,) )
= N + [ -
——-J—J-an R EDKJ,’J (a) ’ (3
where the coefficients C s D depend only upon the amplitudes, but
kJEJ leJ

remain otherwise unspecified, as yet. The "..." means higher powers of ¢ .
These statements specify the kind of quantity over which the
summations are to be carried out. Clearly, the ¥ (K,L) also
possess expa.nI;;.Ians of a.form similar to (3). By the symbol k, we shall
mean the numerical value' of nky + npk, + ... + npky, and by £ , the
mumerical velue of njf; + npf2 + ... + ngiy. Thus, (K,L) is a basic vector
if and only if k& = A2, but different basic vectors may have the same value

of k and £.
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To finish specifylng the sort of solution (2) that we are seeking,
we assume for the a(K,L) expansions of the form

3 = ehg, (a) +

(&)
2a (K,L) _ eBg, (a) + . ..

an

and note that (v) and (vi) imply that for the derived phases,

vy (K, L) _ )
= nik, +€ z n, C (a) + ...
13 J 1IN J 3 kaj (5)

']
_3%_£§L£l = Zj ny te ZJ ny ijlj (a) + ..

It is no loss of generality to assume that a (K,L), ¥ (X,L) are
real, and that
a (K,L) = a (-K, -L),
M (8) = Ay g (),
Bes (a) = By, g, (8),
¢, , (8) = -c (a) (6)

j qj -k'j, - !ﬂj s

Dk 2 (a) = -D (8.) ]
J 'j _kJ’ - R,J

W(K)L)= - W(’K) - L)-




For the solution to be consistent for ¢ = O, we require that

a (K,L) = 0 (¢), ke £ A%, (7
so that if (2) is written as
£=20) 4 (D) (8)

then £ (0) may be unambiguously written as

)y a(xL)e (K, 1)

K,L .
ke =AZ
With this set of notations, and for any T vhich is expandable

about zero in £, 3f/3E , 3f/an , we may always write

?’(f(o),, 3f(°)/35 , af(o)/an ) = 2 FKL (6.) e i“'(K,L) (9)
K,L

where the Fy1, (a) are known functions of the amplitudes which satisfy,

for 3 real,

R (8) =F % (&) (10)

In practice, § will always be some polynomial in f, 3f£/3% ,

and 3f/an,.



Using Eqs. (2) through (9) in Eq. (1b), we get, upon noting
that the zeroth order coefficient vanishes identically and equating

coefficients of et

2

( gﬁan + Aa) u; (a,v ) + Z (-k% + A2 ) & (K,L) ei'#(K,L)

K,L
,ki# A2

e 1 (kd’

L

)
k3™

L)
37 ik + 2 )
3Bty * Ty

2
-a (kj,lj) (kjnkaj + C, 23)}

J

= ) F (a) e 1K, L)

K,L X
If we define
iy(K, L)
vy =u + ) a (K,L) e S
K,L
Ke# A°

then (11) becomes a differential equation for vy

(_ % .4 - 1 Fgl@e 19(K, 1)

3gan K,L (12)

_ Z e iW(kJ: R'j)
k

2 %

ot (£ (kyBep, + F Ay, )

- a (kd,lj) (ijkaJ + 2Jckaj ) }
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Equation (12) has a secularity free solution for v, of the
form

vy = E’L V(l)(K,L) e i¥(K, L)

if and only if

1 (kJBlej+ 5 Akaj) " kg (kD

st Gegey) )
T Ry ™

for all (kj,zj). Note that nowhere have we been required to commit oursélves

as to the values of Ak 2.’ Bk L? Cx L. Dk g’ we are free to choose them to
J 3 37

J J JJ

satisfy (13). Only in this way can we avoid £ or n proportional terms in vy.

Recalling (7), it is clear that the only a (K,L) which comtribute
to the right hand side of (13) are the a (k J,z J). Equating real and

imaginary parts of the left and right hand sides of (13),
X (a) + 2 (8) = Im {F (a)}
Pyt 3 ey, { kL,

a (kj,zj) ("JckJLJ (a) + ijszj (a)) =-Re {ij"'j (a)} ,  (1k)

all kj, zjo
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One consequence of (14) and (4) is worth noting right away,
in connection with the closure problem: we can never have, simul-
taneously, a(kj,zj) = 0 and Fkiz (a) £ 0 for any j. Thus all the

¢7d
various € = O normal modes of the system, if coupled by the ?',
must be excited to O (1). This leaves us with two possibilities:
the subset of the basic vectors‘for which
F_, (a) #0
JJd
a (k,,; 2 0]

is either finite or infinite. Naturally, the former case has many
more calculational possibilities. The latter case is calculable
when two circumstences happen to exist

Im {FKJ% (a)} =0

all J;

a (kj,zj) £0 , 8ll j for which Fy . (a) £ ¢
J*J

It is regrettable that more satisfying general statements about when

it 1s possible to achieve closure among the (k ,%

3 j) cennot be made. This is due

to the very general possibilities for ?’; to go much farther, we must specialize 3?,

which we do in Sec. IV.
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We close this section with a proof that the situation in
reference 1, with only one monochromatic wave in zeroth order,

alweys leads trivially to closure. In ref. 1, we had
f(o) = a (kg, %) e Y (ko ) + a (-kos- 20) e 1¥(-ko, - 20)3

with k, % = A2, and all other a(ky, £;) = 0. From F (£(%), az(®)/a¢, a2(0)/an )

we get terms of the type

ijz. (a) # 0 only if ky (n1+n2+...,)kO

Jd
"j (nl-l-nz*l-.,”)fl.o

If kg =A% and ket = A2, this implies

(ny + n, + .,..,)2=1,

or (kj’ lj) =+(ko, 25), SO that we can never be led outside the set

(ko, £,), (-ko, -25) by any form ot T .
I11. THE ROLE OF BOUNDARY CONDITIONS
From (3) and (4), it is clear that Akaj (a) and B, . (a) are not
J =

J

completely independent, nor are C, , (a) and D (a). Such connection as
, j 7 d 37
exists between them is largely determined by boundary conditions, which we now

pause to discuss.




In Sec. I, we limited ourselves to the case where f and its
normal derivative are given as periodic along the x or t axes. It is
clear from the form of Eq. (1) that perlodicity, once given, will be
preserved throughout the rest of the region of interest in the xt plane
in both cases. Inspection of our solution also mekes it obvious that it

is the interval of periodicity which fixes the spectra of the basic vectors.

From these considerations, it follows that if the boundary is

the x axis and the interval of periodicity is L

]

2 njé/L,

A2,

kj - 23

KyLy

C =
kg by = Dy by

i

" g Tk 2y’ J=0, *1,*2... (15)
3 3

Similarly, if the periodicity is in t with period T,

kJ+£

i

j 2 njc/L,

A2

it

ksl




C = -
Kt it

(16)
Akj!.j = 'Bklj

j=t 1,22, ...

In both cases, kJ + 2 is the frequency of the jth zeroth order

J
mode, and (kj - gj)/c is the wave number. In the former case, we call
2eCy l'the jth “frequency shift" and in the latter case, QECk_z‘ /c
is tge gth "wave number shift". 0

In both cases, the program is, in words, the following. Determine
the a (kj,zj) and ¢ (kj,lj) over the boundary from the boundary conditions,
Compute the Fy 4 (a) there, using the a (kj,lj) and W(kj,lj). From Eq. (4)
and the first gf Egs. (lh), we then have a system of differential equations
for the a (kj,zj) which may or may not have a simple solution. Assuming that
this system is solvable for the a (kj,zj), we can then solve the second of
Egs. (14) for the freguency or wave nuﬁber shifts, as the case may be. We

then solve Eas. (3) and (5) for the ¥(K,L). Finally, we determine v, from {(12),

1
subject to some boundary conditions.

The most convenient set of boundary conditions for vy is to
choose vy and its normal derivative to be zero over the boundary,
which is equivalent to putting all of f into the zeroth order over the boundary.

This is by no means the only possible split-up, of course.
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It need not be said that this program is too ambitious to
carry out for all TS and f(o)'s, which 1s not surprising, since
only in special cases can the much simpler program for the harmonic
oscillator be pushed to completion3, It can be carried out for several
interesting cases, and we shall now illustrate two of the simpler of

these.
IV. TWO TRACTABLE CASES

A. A Case in which ¥ = (f) only.

In this case, Im{}é‘k e (a)}= 0, all j, so we may pick
J

=B
Mepy R

at once to

= 0 for all j, and a.(kj,l') = const., all j. This leads

3 b

w(kj,23)= (kj + €C_, X (17)

kst

+ (EJ +€ijz n + ¢(kj, JLJ),

J

all j, where ¢(kj,£j) is a constant.

For definiteness, let us give f and its normal derivative over

the x axis in the fom
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£ (x, o)

2 Tinx/L
Zn cn e / 3

3f (x,0 Z d 2rinx/L =d ¥
el n O /L 4y = Con-

The function f must be matched up with the t = 0 value of

f(o) i#’(kj;lj)

=) =a (kj,zj) e
Epty

i(k, -2, ) x/c + 1% (k,, 2)
2 a(kj’zj)e J 3 / ( 3
k
3 |
1 (ky - A2 /k) x/c

In this "Fourier series", the coefficient of e is

2 2
16(k,, A%k ) 16 (A%k , - x )

a(kp, A2/kn) e ' +a (-k, -Az/kn) e R so that

1(-A%/kp, - kp)

16(k., A%/x
U k) +a (’Aa/kn, - k) e (18)

¢h = @& (kny Aa/kn) e

The derivgtive is
1¢(k3,zj) + 1 (kJ-!,j) x/c

az(0) _7
k

>% i (1‘;J +9.J) a (kj,l ) e

33 :
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so that

2
, A /¥n)
dn - (k_n +A2/Kn) [a (%’ Az/kn) ei¢ (kn n

(19)

2
-a ("Az/kn: - n) ei¢ (-A /k’n: - kn)]

o

Solving (18) and (19)

a (kp, Ag/lﬁq) ei¢ (e, Aa/kn)
(20)

= 1/2 [e, 4/t (k,y + 4%/K )],

which determines a.(kJ,R.J) and ¢(kJ,9,J) for all j. This therefore determines
w(kj ,2,), all j. We assume throughout the rest of this subsection that we know the
a's and ¢'s,

Now we specialize to study the nonlinear effects associated with two
zeroth order travelling waves in the presence of an ?f = - vf3, v = const,
(The situation is then equivalent to & stretched string imbedded in a non-
linear elastic medium with the end points fixed, if a concrete physical )
example is desired.) We determine, in particular, the frequency shifts for waves 1
and 2, with

f(o) = a, cos dJl + ap cos VYo (21)
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where for e = 0
wl = klg + 11" + ¢l’ ¢2 = koE+ £2n + ¢o,
(22)
a (ky, 2,) =& (-kj,-2) = 8,/2, 8 (kp,2p ) =& (-kp, 5 ) = 85/ 2.

Closure can be guaranteed by picking (kl/k2) + (ke/kl) as any irrational number,

though weaker conditions will suffice.

Computing f?(f(ox% it is readily seen that the non-vanishing Fyp (a)'s are:

(K,L) - 8Fp (a)/v
3 (ky, 231) 83
(kl’ f'l) 38’13 + 6 8.1822
3
3 (k2) 22) 8-2
2
(k2, 25) 38, + 6a)” 8,
(kl’ !'l) +2 (k2: 2’2) 38'18'22
(kp, 21) - 2 (kp, 15) 3a)8,°
2 (kl, zl) + (“2’ 12) 3&12:12

2 (ky, %) - (kp %) 38,28,
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with FKL (a) = F-K, 1 (a), &ll (K,L). Egs. (1k4) and (15) now give:

81 2 3 2
—— c:kl zl(a.) (A%/x, + k9] = (v/8) (38,7 + 6 aya5)

2 o, (0) Mk v k) = (0/8) (30 + 6 2y ap),

which gives the frocquency shifts for waves 1 and 2:

A ~ = 2 2 2
w = ae‘klﬁl 3ev (2,2 + 28,°) / (kg + A%/k)

(23)

boy= 260, = 3w (2° + 201%) / (g + A/ip).

2

The computations for a(K,L) for (K,L) outside the basic set of vectors and

for vy are completely straightforward, and will not be written out.

B. A Dissipative Case

We consider again the travelling waves of Eas. (21) and (22), but
now with a frictional dissipation, F = -ho(af/at)3. (The case of linear

friction, F » - 9f/3t, is trivial.) Thus
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T(f(o)) = - g (E(O_) + af(c.))3
13 an (24)
] 3

= 0 [(k +L,)a; sin ¥, + (ko + 12) ay sin y,

The Fki, (a) are again readily computed, and all have zero real parts, so that

the shifts all vanish. The nonvenishing FKL(a) are:

(K:L) -SiFKL(a)/o
3(kq,2) ul3
(k> %) - (303 + 60, v 2)
3(ko, £5) a23
(kp, 25) - (333 + 60,%0; )
(kl’ R'l) +2 (kg, !’2) 3ala22
(kltg']_) -2 (kQ, !’2) 301(122
2 (kl, "1) + (kg.v 2'2) 301202

2 (k1,4) - (k5 %) - 3u12°2
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where @, = 8y (k; + ll), a, = ap (ko + %5), and F-K,-L (a) = - Fer, (a).

We find, from (1k),

.2
(k) + 4%/x) Agp (@) = -0/8 (303 + 6 a3 ay")

(25)

(ko + A2/k2) A.k2£2 (a) -0/8 (3a23 +6a_a’

2 3 ).

Taking into account (15), we have a, and &, developing according to

- - (3 (g + 2383 + 6 (kg + 21) (5,120 818, )
Wky + A%/k1)

332

2 EAka 22 (8.)

R (26)

(o]
= . ( 2)3 e,3 + Bk, + 8 2.)2 8,2 a,)
e s iy D erae) e flemia) (g e e e

Egs. (26) determine the damping of the oscillations in time as t increases from zero.-
Since the V(k;, zj) retain their simple kjﬁ + ljn + const. form for all x,t, the
rest of the solution is straightforward. It is easily shown from (26) that the

damping of &, and a, is 0 (1//et).
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FOOTNOTES

. D. Montgomery and D.A. Tidman, Phys. Fluids 7, 2hk2 (196k4).

An elegant'approach to the wave equation using similar methods has been
given by M.D. Kruskal and N.J. Zabusky, in J. Math. Phys. 5, 231 (196L).
The perturbation series for the wave equation, however, possesses much

more pathological behavior than in the case of the Klein-Gordon equation.

N. Bogolyubov and Y.A. Mitropolskii, Asymptotic Methods in the

Theory of Nonlinear Oscillations (Gordon and Breach Science Publishers,

New York, 1961; translated from the Russian).

See, e.g., P.M. Morse and H. Feshbach, Methods of Theoretical Physics,

Vol. I, Chapter 6, (McGraw Hill Book Co., New York, 1953).

A quite similar recipe to that given on p. 686 of Reference 4 for the

wave equation can be readily given for the Klein-Gordon equation.




